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Abstract
Measuring Internet access network performance has been a
persistent challenge for researchers and policymakers alike.
Unfortunately, existing “speed test” datasets typically lack
comprehensive data across both space and time. Specifically,
our past work has highlighted that tools like Ookla’s Speed
TestandMeasurementLab’sNDTrelyheavilyonconvenience
samples (user-initiated tests from self-selected participants),
resulting in a sample that may not generalize across either
time or geography. Our ongoing research seeks to address
these issues bydeveloping innovative samplingmethods and
statistical models to provide a more holistic view of Inter-
net performance. Initial findings, focusing on end-to-end la-
tency across hyper-local regions within a single large city
in the United States (Chicago, Illinois), reveal that spatial
proximity often does not correlatewith simultaneous perfor-
mance anomalies. These insights underscore the need for
advanced methods to generalize Internet performance data
across time and space. Improved methods can ultimately en-
able a better understanding of the effects of infrastructure
investments on the evolution of Internet performance.

1 Introduction
Measuring the performance of Internet access networks has
been a longstanding challenge among Internetmeasurement
researchers, Internet service providers, and policy advocates.
Over thepast decade, researchhasmade significant advances
in developing techniques to measure the performance of a
single broadband Internet access link, through the develop-
ment, evaluation, and comparison of Internet “speed test”
tools, in both controlled and wide-area settings. As large
datasets on Internet performance from these tools have be-
come more widely available, researchers have begun to use
them for a much broader set of purposes. For example, be-
yondtheoriginalgoalofmeasuringthespeedofan individual
access link,manypeoplearenowattempting toaskquestions
abouthowbroadband Internetaccessnetworksperformboth
over time and across a geography.

Data from two widely used speed tests that have often
been used in an attempt to answer these questions, Ookla’s
SpeedTest andMeasurement Lab’sNetworkDiagnostic Tool
(NDT), both lack systematic longitudinal measures of per-
formance, because the tests are only performed on demand
(e.g., when a user is experiencing a performance problem).
Thus, temporal assessments of performance are based on
ad hoc decisions of users to run speed tests at particular
moments in time. These datasets also lack systematic mea-
sures of performance across a geography, over-representing
certain geographies (as our research shows, often more af-
fluent regions) while under-representing others. Such geo-
graphic bias is often incredibly pronounced: For example,
many regions in largemetropolitanareas in theUnitedStates
contain no speed test measurements at all. And, while the
Federal Communications Commission’s (FCC) Measuring
Broadband America program captures longitudinal samples
of some Internet service provider (ISP) performance, its spa-
tial sampling is evenmore sparse, sometimes containingonly
a single measurement vantage point in an entire metropoli-
tan area.

This lack of temporal and spatial granularity in existing
datasets brings us to the goal of our ongoing research. Ul-
timately, we aim to develop new sampling approaches and
statistical models that will provide a more comprehensive,
representative view of Internet performance over time and
across a geography. Our prior and ongoing research over
more than a decade, has demonstrated that measurement de-
vices deployed in real-world settings can produce reliable
“point data” on Internet performance from individual van-
tage points. As researchers and the public in general seek
tounderstand Internet performance across regions, however,
we face twodistinct challenges: (1)understandinghowtouse
performance metrics at a single vantage point to make gen-
eralizations about the performance of that access network
over time; (2) understanding how to use spatially correlated
Internet measurements, from a collection of vantage points
in broadband Internet access networks, to make generaliza-
tionsabout Internetperformancewithinageographic region,
and across geographic regions.



Although this general task is extremely challenging, the
datasetwehavegatheredacrossmore than30neighborhoods
in Chicago over the past several years offers an opportu-
nity to begin asking these questions. In this paper, we be-
gin asking these questions from the perspective of one Inter-
net performance metric: end-to-end latency, both to the last
mile and to other destinations on the Internet. Our research
makes two observations:

1. Network vantage points that share a persistent in-
crease in end-to-end latency may not always be geo-
graphically close to one another.

2. Network vantage points that are geographically close
to one another may not always experience the same
increase in end-to-end latency.

In other words, spatial proximity—even very close spatial
proximity—is often a poor predictor for performance anoma-
lies that may coincide in time. These initial findings, albeit
for a simplemetric (latency), suggest thatmany existing sam-
ples of Internet performance may not generalize well, either
across space, or time.

Ultimately, the research and policy communities should
work together to develop new approaches for temporal and
spatial sampling, as well as new statistical models that can
be used to make generalizations about existing datasets con-
cerning Internet performance. Ultimately, more advanced
methodswill helpusanswerquestionsabouthowthecurrent
and planned investments in Internet infrastructure affect In-
ternet performance in certain regions, and howperformance
in a particular region evolves over time.

2 Background
Many metrics can be used to evaluate Internet access per-
formance. One of the most common is “speed” (or through-
put). Usually estimated by speed test tools, this metric ex-
presses the rate atwhich data can be successfully transferred
between two endpoints. Another important but sometimes
overlooked metric is latency—the time it takes for any sin-
gle bit of data to travel between two network endpoints. In
networking, the latency observed for a packet is a result of
many delays such as those due to physical propagation as
well as packet processing and queuing [8]. The continued
rise of near-real-time applications (e.g., video streaming and
conferencing, remote surgery, and algorithmic trading) im-
poses increasingly strict requirements on Internet access la-
tency. Past studies [2] show that even small increases in la-
tency may lead to significant loss in throughput.

In this paper,we focuson round-trip time (RTT) “latency”
measurements. We focus on this metric due to the low-cost

nature of the measurement, which has allowed us to collect
many samples across time and space within a single hyper-
local geography. Speed tests, in contrast, consume large
amounts of data and thus cannot be performed as often, and
are also typically restricted to targeting a limited set of test
servers. Manyemergingreal-timeapplications, fromgaming
to videoconferencing, also rely heavily on latency, andmany
ISPs (e.g., Comcast) are focusing heavily on reducing latency
across their access networks as a result. Tools measuring
RTT, such as ping, send an Internet Control Message Proto-
col (ICMP) probe to a remote node, which responds with a
response probe. The initiating host records both the times-
tamp when the ping probe was sent and when the response
probewas received. The time difference between both times-
tamps estimates the RTT between the two end-points.

Round-trip latency depends on many factors, such as
those due to physical propagation of data, packet queuing
at intermediate nodes, and probe processing. Changes in
the measured round-trip latency can thus be attributed to
changes in these delays. However, there aremany confound-
ing factors that can influence the perceived changes to each
delay. These factors are related to the path taken to reach
the test target, the presence and rate of background traffic
sharing the path, and network operation policies (e.g., traffic
prioritization), to cite a few. We note that these factors vary
both across space and time. Across space because Internet
infrastructure is heterogeneous, where some areas may be
better provisioned than others [4]. Across time because In-
ternet utilization varies depending on the time of day, week,
month, year, and so on [2]. Further, these factors have an
impact not only on latency but also on speed tests.

Detecting and measuring the effect of these factors is
both important to understand the level of impact that each
has on performance and to help explain the obtained results
for a particular vantage point in time and space. Understand-
ing these factors and how individual portions of the Inter-
net infrastructure ultimately affect latency is crucial to guide
the continued investment in Internet infrastructure. Conse-
quently, we argue that in order to be able to make gener-
alizations on performance over time and across space, it is
imperative to perform auxiliary fine-grained measurements
that help us better understand the variability of these met-
rics across geography (e.g., across individual vantage points
in a city) and time (e.g., from hour to hour or day to day).
Measurements concerning latency, including both end-to-
end and hop-by-hop, can shed light on these important ques-
tions. In the remainder of this paper, we provide initial ev-
idence where latency measurement can lead to meaningful
conclusions in this regard; we focus in particular on the chal-
lenges inmeasuring latency across space and time, noting in



particular that temporal variability in latency can correlate
poorly with geographical proximity.

3 Dataset
We used the Netrics platform to conduct measurements for
this study [6]. Themeasurements are executed on Raspberry
Pis (RPis) connected directly to the home router for residen-
tial broadband connections. Netrics’ latency measurements
are conducted against multiple targets, including fixed dis-
tant measurement lab (M-Lab) [5] servers, the ISP’s last mile
IP address, and popular servers that host services like news,
social media, shopping, web search, etc. Measurements to
the ISP’s last mile involve two steps. First, we conduct a
traceroute measurement to a known destination and record
the first public IP address along the network path. Then, we
conduct a latency measurement to this IP address. For the
purpose of analysis in this work, we only consider measure-
ments to fixed IP addresses like M-Lab servers and the ISP’s
last mile. This is because popular services are often hidden
behind load balancers and proxies which leads to unreliable
differences in Internet performance. Each latency measure-
ment to a given IP address consisted of 10 ICMP probes, sent
every 0.25 seconds with an expiration timeout of 5 seconds
each. The average round trip-time over the complete mea-
surement was recorded alongwith the device demographics,
the target server and the timestamp of themeasurement. We
collected one latencymeasurement from each device every 5
minutes over the course of the study.

Netrics has been collecting these RTT measure-
ments over more than 2 years till the present day.
All of our measurement data is publically available at
https://github.com/internet-equity/netrics-data. For our
initial analysis, we focus on a sample time period from
May 1 to June 30, 2022, when Netrics was deployed on
88 devices, the maximum number of devices we observed
at any time. Within this data, we mainly focus on RPis
located in two Chicago neighborhoods—Logan Square and
South Shore—as they contained the majority of RPis. The
choice of these neighborhoods is motivated by a history
of socio-economic differences. Both these neighborhoods
also do not share a geographical boundary, so we expect
them to host distinct regional and local points of presence
of the ISP infrastructure. We use data from the remaining
neighborhoods only to reaffirm our findings.

4 Preliminary Results
In this section, we describe our preliminary findings of vari-
ability of latency measurements across space and time. Our
findings from this initial study are preliminary and, to this
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(a) Latency to Atlanta for Logan Square and South Shore devices
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(b) Latency to the ISP’s Last-Mile for Logan Square and South Shore
devices

Figure 1: Excess RTT time-series slices for Atlanta and the
ISP’s last-mile respectively. All 4 devices subscribed to the
same ISP during the analysis. Each color indicates a different
neighborhood.

point, largely anecdotal, but they suggest that the commu-
nity has a lot of work to do in this area. In particular, when
latency exhibits temporal variability, it does not necessarily
mean that endpoints in the same neighborhood are experienc-
ing the same latency variations. We also find that latency vari-
ations can be highly localized, even within the same neigh-
borhood. Although our findings in this paper are largely
anecdotal, future work will entail a more systematic study
of how latency anomalies within a given geography may di-
verge.
Result 1: Devices sharing a persistent end-to-end la-
tency spike may not always be located in the same
neighborhood. Figure 1a shows a slice of the time series
for round-trip latency to an M-Lab server located in Atlanta.
There are four devices shown in this figure, with the red de-
vices located in Logan Square, and the blue devices in South
Shore respectively. All devices are subscribed to the same
ISP. Excess RTT, defined as the difference of RTT from the
minimumRTT across a timewindow, is plotted against time.
This is done to ensure better visibility into the spikes and ac-

https://github.com/internet-equity/netrics-data
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Figure 2: Latency to Atlanta for Lake View and Dunning de-
vices

curate comparisons with the last-mile latency. We observe
two different durations in which the latency to Atlanta rises
above the baseline for more than a single measurement. The
first change occurred between 12 am and 6 am on June 28,
2022. This change is observed across all four devices, suggest-
ing that it occurred at a link that is shared along the network
path to Atlanta for both Logan Square and South Shore. The
second change occurred between 3 pm and 6 pmon the same
day but only for two devices, both located in Logan Square.
This indicates that it was due to the occurrence of network
congestion at a link close to or within Logan Square. To eval-
uate whether either of the changes occurred near the ISP’s
last-mile access router, we look at the last-mile latencies. Fig-
ure 1b shows that the last-mile latency was relatively stable,
suggesting that none of these changes originated at the ISP’s
last-mile.

We also verified if both these changes were only a coin-
cidence. To do this, we looked at the latency to Atlanta for
two other neighborhoods – Lake View andDunning, that do
not shareageographicboundarywitheitherLoganSquareor
South Shore. Figure 2 shows that the first spike was also ob-
served in a device located in LakeView. Contrary towhatwe
expected, we saw a dip in the latency around the same time
for a device in Dunning. This is very likely a result of load-
balancing applied by the ISP [1, 3] to address traffic demands
during high network congestion. Devices Logan Square 1,
Logan Square 2, South Shore 1, South Shore 2 and Lake View

were routed via a suboptimal traffic aggregation point, while
Dunning was routed via a more optimal path. The second
spike was not observed in any of the devices subscribed to
the same ISP in Lake View, South Shore or Dunning. It was
observed in 6 out of 10 devices in Logan Square, reaffirming
that it was a result of congestion at a link close to or within
Logan Square.
Result 2: Devices located very close to each other may
notalwaysexhibit similar last-mile latencyspikes. In
another scenario, we observe a co-occurrence of latency
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(a) Latency time-series slice for Atlanta and the ISP’s last-mile re-
spectively for South Shore 2.
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(b) Last-Mile time-series slice for South Shore 3 – a device located
53 meters from South Shore 2.

Figure 3: Plots showing that last-mile latency spikes do not
co-occur for devices located close to each other.

spikes for device South Shore 2 for Atlanta and the ISP’s last-
mile (the spikes around 28 May 2022 00:00 am in Figure 3a).
This suggests that there are instances where the ISP’s last-
mile access network may also be congested. Since the last-
mile RTT includes the RTT for the home router, it is impor-
tant to find whether these co-occurring spikes are the result
of a congested router or theyappear at the last-mile link. As a
next step, we therefore look at the RTT for the same duration
for a different device, South Shore 3, thatwas located only 53
meters from South Shore 2 and shared the same last-mile IP
address as South Shore 2. Figure 3b shows the slice of the
last-mile RTT for South Shore 3 for the same time duration
as Figure 3a. We observe negligible similarities between the
twodevices in termsof co-occurring spikes. This implies that
the spike for South Shore 2 likely was a result of congestion
at the home router.
Implications for sampling design. Our demonstrations
suggest that latency bottlenecks may arise at different parts
of the network. The reasons behind these bottlenecks may
also vary with their location along the end-to-end network
path. For example, the spikes that were observed for South
Shore 2 in Figure 3a may have appeared as a result of multi-
pleuserswithin ahomeconsumingcontent fromastreaming
service at the same time. As a consequence, the home router



started delaying the transfer of any new packets across the
network, leading to a higher latency than normal. For Fig-
ures 1a and 2, higher latencies may have been a result of con-
gestion at city or regional level traffic aggregation routers.

It is of course extremely challenging to anticipate the
network-level faults that can lead to congestion. Yet, iden-
tifying devices and durations exhibiting elevated levels of
congestion in real-time may have important implications to-
wards constructing an effective data sample. For example, if
common last-mile latency spikes are identified for a group of
deviceswitha shared last-mile at the same time, sampling the
results frommultiple diagnostic tests for onlyoneof these de-
vices may suffice. This is because in such a scenario, the per-
formance bottleneck is most likely the last-mile aggregation
point, and sampling additional tests from multiple vantage
points will provide redundant information. Extending this
approachforall aggregationpointsuntil the ISP’sedgewould
thus help identify hierarchies of variation of Internet perfor-
mance and lead to datasets with reduced sampling bias.

5 Looking Ahead
Existing Internet performance datasets exhibit both spatial
and temporal bias, yet the nature of that bias, how it may af-
fectmore general conclusions, and—most importantly—how
to construct a generalizable sample across a geography, re-
main poorly understood. This paper does not yet present a
sampling strategy or broader solution to this problem but in-
stead draws attention to the problem by observing that even
for a relatively stable and predictable Internet performance
metric, latency, variability does not often correlate across
nearby network vantage points.

Understanding Internet performance across space and
time will ultimately require more coverage within a smaller
geography, and a better understanding of the underlying in-
frastructure and how it varies across a geography. Given
better information about infrastructure locations from ISPs,
evenwithin smaller geographies, we could use our approach
to identify local factorswhichmay (ormay not) be contribut-
ing to performance anomalies that occur within neighbor-
hoods. Future analysis could also isolate the performance
of the last-mile link, which may be important to ultimately
the extent to which the home network, access ISP, intercon-
nect, or other portion of the infrastructure may ultimately
be responsible for a performance anomaly. Finally our ex-
isting sample, which was not driven specifically by the need
to understand the effects of infrastructure on performance
variability, may ultimately need to be even more focused
and local to help us better understand the relationship be-
tween geography and performance anomalies. Specifically,

our deployments have been targeted towards revealing per-
formance inequities across geographies [7]. While this data
helped us compare performance across neighborhoods, they
did not allow us to identify the variation of Internet perfor-
mance along the smallest units of geography and time (e.g.,
multiple houses within the same city block).
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