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Abstract

By integrating a “big” dataset of Internet Speedtest® measurements from Ookla®
with data on household incomes from the American Community Survey (ACS), we
attempt to measure Internet speeds across income tiers. In the Ookla data, each
measurement is technically rigorous but the sample frame is unknown. The ACS
provides necessary information on income and Internet access from a known sample
frame. Our likelihood combines these data and endogenizes selection effects to identify
Internet speed distributions by income tier. We credibly identify the speed distribution
for middle and high-income households. However, because the participation rate of low-
income households in the Speedtest data is so limited, the speed estimates for these
households are not identified.
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1 Introduction

Full participation in modern societies requires usable broadband Internet access. Internet
access is used for work, for play, for communication and social interactions, for banking,
billing and other economic transactions, for health and for entertainment (see Appendix).
This was true before the coronavirus pandemic and it will be true when the pandemic
subsides. But the pandemic has underscored the urgency of the “digital divide,” between
those with and without access to the Internet, especially as it relates to the “homework gap”
for children expected to participate in remote learning without appropriate connections or
equipment.
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The American Community Survey (ACS) tells us that 83% of households nationally have
a broadband Internet subscription. These data also highlight variation at the tract level and
benefit from a well-controlled sampling strategy. However, they dichotomize access in a fairly
rudimentary way: the presence or absence of a connection with a downstream bandwidth
(data rate) of at least 25 Megabits per second (Mbps) and an upstream bandwidth of at
least 3 Mbps. The ACS data cannot tell us how the quality of connections varies among
households. Internet Service Providers (ISPs) report service plans available in each Census
block on the Federal Communication Commission’s (FCC’s) “Form 477.” But the FCC data
represent installed infrastructures rather than realized services. Who is getting performant
Internet?

In this project we leverage Speedtest Intelligence® performance data, crowd-sourced by
Ookla to compare bandwidths (colloquially, Internet speeds), used by households in the
Chicago area. While these data are the gold-standard of Internet speed measurement, they
are not from a probability sample. The data are from a “convenience” sample. In this
paper, we ask: What can we learn from “big data” with potentially selected samples? The
fundamental problem is that some individuals choose to run a Speedtest while others do not.
This selection problem bears similarities to one familiar to economists: wages are observed
only for participants in the labor market. Unfortunately, our measured Internet speeds are
not linked to individual-level covariates. This limits the adjustments that can be made
through traditional methods.

We begin by describing the assumptions required for inference about the Internet speeds
of the human population, using the Speedtest on its own. Without appealing to any external
dataset, realistic assumptions permit us to construct the relative likelihoods of falling in
different Internet service tiers, in Census tracts across the city of Chicago.

We next seek the joint distribution of income and Internet speed. To estimate this, we
must combine other data sources into our analysis. In this paper we use data on tracts’
income composition from the Census Bureau ACS. Separately, the Speedtest data provide
us with the marginal distribution of Internet bandwidths and the Census data provide the
marginal distribution of incomes. Naively, we might attempt to construct the joint distri-
bution using the Fréchet-Hoeffding bounds (Heckman et al., 1997). However, we have no
matching variable with which to narrow these bounds. Moreover, the standard methods do
not allow us to address the substantial selection biases that are apparent in our data.

We therefore propose a new model that both endogenizes the selection effect and allows
us to estimate the joint distribution. We achieve this by constructing a likelihood that
incorporates counts of households by income and Census tract from the ACS with both
the volume and distributions of the Speedtest data, again by Census tract. We show that
while our method can identify Internet speeds for middle and upper income households,
the Speedtest data, despite its “bigness,” does not provide us with sufficient information to
identify the distribution of speeds for lower income households.

Before concluding, we illustrate how our model may be extended, using the FCC’s data
on fiber availability to evaluate the impact of that availability on measured speeds.



2 Earlier Literatures

Despite widespread public attention to the digital divide, recent academic work on class-
based disparities in Internet accesss and performance in American cities is surprisingly lim-
ited and dated. Using a supplement to the Current Population Survey (CPS) on Internet
access, devices, and use, as well as their own surveys for Chicago, Mossberger et al. quantified
disparities in Internet use in American cities (2013). They usefully delineated the multiple
(interacting) levels of the digital divide (skills, infrastructures, access, performance), and the
many affected populations (between genders, race or ethnicity, income levels, and regions).
In this paper we focus on differential performance between income levels. Hilbert emphasized
the need for bandwidth measures and performed this work at the national level (2016), but
analogous work has not been performed within communities in the United States. In Britain,
Riddlesden and Singleton (2014) used data similar to ours to report mean download speeds
within English districts; while they describe the same, substantial variation in sampling rates
that we have already noted, they did not explore the implications of this variation for the
reported means, or for any inference about populations living within those districts. Here,
we again take up the challenge, with bandwidth quantified as the maximum achieved data
rate in Megabits per second (Mbps), in the downstream direction.!

Methodologically, this paper continues an important vein of work on statistical inference
with self-selected samples (Winship and Mare, 1992). Although one can naively trade ac-
curacy or bias for precision (Elliott and Haviland, 2007), the more-robust and sophisticated
strategy is to model the selection effect (Baker et al., 2013). That is the strategy we pursue
here. Our work also engages past work on data combination — the construction of a joint
distribution from multiple data sources. Like other previous projects in this space, our ob-
servable, Internet bandwidth is simply not available in existing controlled samples. At the
most conservative level, Fréchet-Hoeffding bounds can be constructed from the univariate
distributions, as already noted; if additional “matching” variables are available, these bounds
can be tightened (Ridder and Moffitt, 2007). But in our situation (a) no matching variable
is available and moreover (b) the univariate distribution of interest has severe selection bias
that we must also address (cf. Figure 1).

Finally, readers may recognize parallels between our work and raking or post-stratification
methods, in the sense that our procedure determines the observed size of strata from data.
Our method differs fundamentally from this literature, however, because the stratification
variable (income) is not observed in the Speedtest data.

In short, our formulation of the combined sample selection and data combination problem
is distinct from past work. We believe, however, that this structure will find broad applica-
tions in the modern, “big data” era, in which researchers must perform rigorous inference
with large, unaligned convenience samples.

'Download speed is the value typically quoted and is used for our results in the main text. Although
we relegate results to the Appendix, upload speeds are in some ways a cleaner measure. The reason for
this is that download bandwidths often exceed what consumer equipment viz., Wi-Fi, can actually handle.
For that reason, observed upload speeds are more likely than observed download speeds to align with what
consumers buy.



Figure 1: Number of devices running QOokla Speedtest measurements per
Internet-connected household, as a function of Census tract log median house-
hold income. Data represent the four-county region centered on Chicago. The y-azis is
truncated for visual clarity, excluding 0.4% of tracts.
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3 Data on Internet Performance: Promise and Chal-
lenges

There are several public datasets on Internet access. We discuss several, highlighting the
promise and challenges of each. These data cover a variety of measures relating to broadband
access. These measures, illustrated in Figure 2, include access, understood as broadband
subscriptions, performance, quantified as bandwidth, and infrastructure, represented as the
availability of fiber service to consumers. We now describe each in more detail.

3.1 Access: Data from the Census

The American Community Survey (ACS) measures the presence of Internet devices and
broadband Internet subscriptions at the Census tract level. The measure of Internet access,
the self-reported, dichotomized presence or absence of a subscription with a downstream
bandwidth of 25 Mbps and an upstream bandwidth of 3 Mbps, is coarse and captures only
the extensive margin. It tells us neither what speeds are actually experienced in a household,
nor how much Internet speeds differ between high- and low-income groups. The Census does
release tract-level estimates that cross this self-reported Internet access with bins of house-
hold income. A great strength of the ACS is of course its rigorous sampling methodology.
The 5-year estimates and 2019 vintage of the ACS were used in this analysis.

Similar data are available in a supplement to the CPS for the National Telecommunica-
tions and Information Administration (NTTA). Those data are in some ways richer — the CPS
elicits respondents’ patterns of use (Appendix Table 1) — but because of the limited sample
size of the CPS the geographic granularity of the data is coarse (metropolitan regions).



Figure 2: Distinct measures of Internet access in Chicago. Fach plot presents
on “concept” of access and a variable capturing that concept, in the Chicago region. The
City of Chicago itself is outlined in black. (a) Shows socioeconomic status or ability to pay,
illustrated as median income and (b) presents household broadband subscriptions, both from
the American Community Survey. Data reported to the FCC 477 delineate deployed infras-
tructure, shown here as the availability of fiber (c). Finally, median upstream bandwidths
from Ookla Speedtest measurements show performance (d). Plots (a) and (b) are very con-
sistent: access depends strongly on pure ability to pay. Performance depends more closely

on infrastructure, as can be seen by comparing (c¢) and (d); this relationship is exploited in
Section 4.3.
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3.2 Infrastructure: Form 477 Reports

On the Federal Communications Commission’s (FCC’s) Form 477, Internet Service Providers
(ISPs) report the services that they offer and contract for in each Census block of the United
States. The FCC publishes the data on offerings but not provision. These data have notable
limitations. The criterion for “offering” a contract is very weak: it could be offered to at least
one household within a Census block. Recent work comparing 477 reports with ISPs” own
online subscription systems has shown that the reports overcount even this loose definition of
offers (Major et al., 2020). Earlier work using the same strategy noted close correspondence
between 477 reports and Google’s Fiber deployments in Provo, UT and Austin, TX Grubesic
et al. (2019). Notwithstanding, the data quantify available infrastructures, including the
deployment of residential fiber, which we use later in this paper.

3.3 Performance: Ookla Speedtest Intelligence Data

Speedtest Internet performance data are crowd-sourced globally by Ookla. Publicly available
data are aggregated at the level of geographic “quadtiles,” but Ookla has provided us with
disaggregate Speedtest Intelligence data for four counties in the Chicago region (Cook, Will,
and DuPage counties in Illinois, and Lake County, Indiana). We use one year of data, from
2020. Each line of data represents one Speedtest. Variables include the unique ID of the
device that ran the measurement, the time of the test, its location (latitude and longitude,
determined via GPS), the ISP used for the connection (determined from the IP address),



and the results of the test: downstream and upstream bandwidths, latency (the round-trip
time for a signal to reach a server), and jitter (variation in the latency). The Census tract
of each test is determined from its latitude and longitude. We require tests to be executed
on a fixed-line (as opposed to cellular) consumer broadband connection, based on the ISP.
There are 5.5 million tests on fixed-line connections, from 339 thousand unique GPS-enabled
devices (smartphones and tablets) in the four-county region.

We aggregate tests at the device level and assign each device a single “home” tract,
determined as its modal tract at night.? We then take the median value across tests within
the home location, for each device. In doing this, we aim to mitigate the impact of frequent
users, some of whom perform hundreds of tests. Note that individuals and households may
have several devices; we cannot distinguish this in the data. Further, we do not know who
runs tests or why they choose to run them — either at all, or at the times that they do. For
example, users may be motivated to run tests when they are frustrated by their connection,
or when they have just set up a service or upgraded equipment. These factors cannot
be addressed by our selection methods, below. Speeds observed are those experienced at
endpoint devices (usually, post Wi-Fi), which is typically less than the bandwidth delivered
to the home and available at the router.

It is worth emphasizing that from a technical and infrastructure perspective, Ookla
Speedtest Intelligence is the gold-standard of Internet performance measurement. Perfor-
mance measures are also publicly available from Measurement Lab (M-Lab), but the test
protocol was not historically able to saturate a connection (measure very high speeds, a
technical limitation), and the server infrastructure has proven unreliable. Further, M-Lab
cannot measure true geographic coordinates; it relies instead on IP geolocation. In gen-
eral, commercial IP geolocation is not adequately accurate for tract-level, demographic work
(Ganelin and Chuang, 2019; Saxon and Feamster, 2021). The FCC’s Measuring Broadband
America (MBA) also provides performance data. However, the sample is much smaller and
in fact no devices are identified within Cook County (where Chicago lies). The MBA sample
is stratified by ISP and Census region rather than by population (Office of Engineering and
Technology and Consumer and Governmental Affairs Bureau, 2016); like the Ookla data, it
is biased towards wealthier neighborhoods.

Speedtest measurements originate disproportionately from wealthier neighborhoods, even
taking into account unequal rates of broadband subscriptions across neighborhoods (Fig-
ure 1). The correlation in the four-county Chicago region between devices per Internet-
connected household and tract log median household income is 0.61. Clearly, the sampling
is not random.

2Ties are broken based on the tract in which the most tests were executed on weekends and then overall,
and finally by the greatest duration between the first and last test in the location.



4 Home Internet Performance in Chicago

4.1 Relative Performance Between Tracts: Non-parametric Esti-
mates

We begin our analysis by considering what may be learned by relying solely on the Speedtest
data. Toward that end, let m,; denote the number of speed measurements observed in a
particular tract, t at a given speed s. There are four speed categories s € {0,1,2,3},
delimited by [0, 32), [32,82), [82,182) and [182,00) Mbps; these bounds are defined so that
each encapsulates roughly one quarter of tests overall. If we define m; = > ms,, then we
may write the probability mass function (pmf) of devices’ speed tiers as

g1(s) = mg/my. (1)

Denoting the count of households with Internet subscriptions in a particular tract by n; and
the count of such households by Internet speed tier by n,;, the pmf of Internet speeds by
Internet-connected household is

fi(8) = ngi/ny. (2)

What is the relationship of speeds ¢;(s) to households f;(s)?
It is helpful to define the identity

ms,t = as,t ns,t (3)

where a,; is a selection adjustment parameter between Internet-connected households and
the number of devices. Note that a,; is not the probability of a household in a tract appearing
in the data: households can run tests on multiple devices, each of which would be included
once. Two assumptions would give us identification of f;(s;) immediately. First, we could
assume as; = a is a constant. In this case, it is unnecessary to estimate the value of a as
it would cancel in our calculation of g;(s). While providing identification, this assumption
would directly contradict the evidence presented in Figure 1.

An alternative that would allow us to trivially match the data in Figure 1 would be to
assume that a,; = a; so that all of the variation in the rate of running a Speedtest is from
Census tract. As above, there would be no need to estimate a;, since it would cancel in the
calculation of g:(s). In this case, fi(s;) would follow immediately from the Speedtest data,
as simply ¢,(s;). But while this assumption would be able to account for the heterogeneity
depicted in Figure 1, we consider it no more credible. If there is significant heterogeneity in
the Speedtest rate as a function of income between tracts, it seems unlikely that the rate is
homogeneous as a function of household income within tracts.

This leaves one last obvious assumption: a,: = as. In this case, the rate of running
a Speedtest relies on the speed of the Internet connection. This assumption is appealing
because performant home Internet and high rates measuring Internet performance both
evidence an interest in Internet performance. Unfortunately, without auxiliary data there
is no way to identify a,. To see why, consider a possible candidate, say, a,—o = a’. If we
double this solution to a,—¢ = 2 x a” and the same time halve the estimate of the size of
the population, ns—o; for each tract, then the observables m,—o; are unaffected. Without



constraints on the number of households at each speed tier within a tract, we may set these
sampling rates to what ever value we wish.

However, we can still use any statistic that does not require the parameters a, to be
known. A promising candidate is the ratio of households in high versus low speed tiers, by
tract,

Pr(s=3|t) fi(s=3) nes:/n  negy
Pr(s=0[t) fi(s=0) nsot/mt Ns—os

According to our assumption, this is

(4)

PI‘(S = 3|t> ms:?),t/as:?) Mg=3¢ As=0

= - (5)

PI'(S = 0|t> ms:O,t/aszo Ms—0¢ as:3.

Since the adjustment rates a, are unknown, the value of the ratio is indeterminate. However,
because as—g/as—3 is constant across tracts, ms—s/ms—o. is proportional to the ratio of the
probabilities. To fix the constant of proportionality, we normalize the statistic by dividing
the number of test devices in each speed tier and tract by the total number devices at that
speed tier. Our statistic is then

ms:3t/ms:3
S\ T R = 5=t 7879 §)
PI"(S - 0|t) x ms:(),t/ms:() ( )

The statistic R, which remains proportional to the probability ratio, can also be understood
as a tract’s share of the region’s high-tier devices relative to its share of low-tier devices.
The share of high- to low-tier devices is clearly correlated with income, though the device-
weighted correlations are perhaps lower than anticipated: just 0.28 (p < 0.001). (The
correlation is illustrated in the Appendix.) Our non-parametric approach suggests where
speeds are high or low, but it does not tell us who it is within tracts that experiences high
or low speeds.

4.2 Performance by Income Level: Endogenizing the Selection
Effect

We next aim to estimate performance as a function of household income. Technically, we
seek the joint distribution of income and Internet bandwidth, f;(i;,s;). The ACS provides
us with counts of households with and without Internet subscriptions, by tract and income
category. We collapse these counts in three broader bins: less than $35,000, $35,000 to
$75,000, and above $75,000.

Between our two data sources, we have two marginal distributions: the distribution of
bandwidths g;(s) as before, and the distribution of incomes h; (), with the income categories
i € {0,1,2} given above. As above, the sampling rate in the Speedtest data is related to
household counts by unknown adjustment parameters a; s ;:

m; st = ai,s,tni,s,t~ (7)

Again, although we observe the sums my; = >, m; s, and n;; = Y n;s,, we do not observe
any of the individual components m; s, 7 s+, Or @; 5. What to do?
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Economists may appreciate the aim of adapting Heckman-esque problems of self-selection
(Heckman, 1974; Winship and Mare, 1992) to the era of big data. There are important
parallels here, but also interesting differences: we observe tests for a self-selected subset of
people in each tract, rather than incomplete observables for a subset of the observations. We
observe groups rather than individuals.

Above we assumed that the adjustment rates a were a function of speed; we now assume
that they depend only on income: a;s; = a;. The rates are constant within income tiers
across speed categories and Census tracts. In view of the correlation between a; and income
shown in Figure 1, as well as our current application, this assumption seems prudent. We
also assume that, conditional on income, devices’ likelihoods of falling in each speed tier are
constant across Census tracts.

Our approach can then be summarized by

Mts = Zz Nt Qi Psi - (8)

The expected number of tests in each bin m;."" is derived from the Census’ count of house-

holds with broadband Internet n;, multiplied with the income-dependent adjustment pa-
rameter a;, and the probability of a test in an income bin falling in each speed tier, p,;. Both
mys and ny; are observed; we will estimate a; and p,;. This equation, which undergirds our
subsequent likelihood estimation, is illustrated in Figure 3.

The number of households per income bin is not equal; the bin breaks were constrained
by existing divisions from the Census. Since every test falls into one tier, the bin probabilities
psi entail three instead of four degrees of freedom per income level. Computationally, we
estimate these p,; indirectly, via the bin boundaries, denoted b,;. The by; represent the value
of the CDF of speed conditional on income for the Internet-connected population, at the cut
points already given: {0,32, 82,182, 00} Mbps. The boundaries and probabilities are related
by psi = bsi — bs_14. Clearly, by, = 0 and by; = 1; we also constrain bs1;,; > bs;. These cuts
are common across Census tracts, which provides us with p,. The constraints, as well as
one enforcing non-negative adjustment rates a;, are implemented as ad-hoc penalties in the
likelihood function. The reason for using penalty functions will become apparent when we
discuss our results in Table 3.

Our approach is to put enough structure on the data to allow us to recover estimates
of the joint distribution function without robbing the data of the ability to inform us on
the substantive issue. There is, of course, a fundamental tension between the assumptions
necessary to recover the joint distribution and the need to extract information from the data.

Now turn to the likelihood. For notational simplicity, allow the vectors n, a, and b to
denote the full sets of bin populations, selection adjustment effects, and speed distribution
parameters. The Internet-connected populations n are known from the ACS and fixed; we
estimate @ and b. The basic likelihood (without boundary constraints) is then simply the
product of the Poisson probabilities of the observations in every tract x speed bin, whose
expectations were defined in Equation 8. The negative log likelihood is then

- log L=— Zt Zs log[pPois<mtS|nv a, b)] (9)

In all, there are twelve parameters in our nominal fit: one selection effect and three speed
bin boundaries, for each of three income levels.



Figure 3: Illustration of the likelihood function, Equations 8 and 9. The ob-
servables are the numbers of tests per speed tier in each Census tract mys and the counts of
households at each income tier ny. By assumption, the proportion of testing devices in each
speed tier py; and the number of devices per household a;, conditional on income, are both
constant across tracts.
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For identification, we are relying on heterogeneity in the marginal distributions of in-
come across tracts to identify the selection rate and inform the joint distribution of income
by speed. Trivially for Chicago, this requires enough tracts to cover the fitted degrees of
freedom. More substantively, estimates require adequate heterogeneity in the income dis-
tribution between tracts. Without the income heterogeneity, the test rates per household
cannot be isolated by income, and the relative proportions of speeds by income cannot be
determined. Again, these requirements are met abundantly in Chicago.

It should be apparent that we can modify our setup by “crossing” income with other
indicators, to derive the distribution of speeds conditional on those joint requirements. To
illustrate this, we will separate tracts with and without fiber availability, to identify the
impact of living in neighborhoods that are or are not served with fiber on upper-income
households’ Internet performance.

The basic assumption of our model is that the rate at which households generate unique
devices in a speed bin is captured by income groups ¢, and is constant across tracts. Denote
the household-level analogs to the variables above by the subscript k. For instance, a; is one
household’s number of Speedtest devices. The assumption can then be expressed as:

f(skli) = f(sili t,ar = 0) = f(skli,t,ap > 0) (10)

The credible part of this assumption is that income does capture a great deal of the variation
in both adjustment rates and speed. What is less credible is that the households that do
generate tests are expressing an interest in Internet performance that we expect may also be
in evidence in their purchasing patterns. That would suggest that

E[sk|2’k,ak = O} < E[sklik,rk > O} (11)

Indeed, we can confirm empirically that at the tract level, positive residuals for testing rates
regressed on income are associated with higher shares of devices in the highest speed tier.
Further, our income bins are set by the Census and they are quite coarse. Just as higher-
income users generate more tests across bins (Figure 1), they may also be expected to do so
within bins:

E[zk|z,ak > O] < E[zk|z,ak > O] (12)

All of these factors would lead to bias towards wealthier users in each bin, potentially biasing
speeds upwards. In short, the a;n; households who run tests may have different (likely,
higher) speeds than the (1 — a;)ny; households who do not. Our method cannot correct for
this error, just as it cannot control for the timing or motivations of users’ tests.

There are three further subtleties: independence of observations, the estimation of the
standard errors, and why we used broadband penetration rates from the Census. Indepen-
dence among speed by tract bins is required for the product in the likelihood. But are the
bins really independent? As written, the likelihood requires that the Poisson process of the
group of people at each speed tier generating a count (running a test) is independent from
bin to bin. So the probability of every observation is independent. Effectively, the tester
“realizes” a count for a theretofore latent variable. The other argument would be that bins
are of course not independent: a “low” Speedtest moves an observation from a higher bin
to a lower bin, violating independence. This is analogous, however, to a “piece of mail”

11



Table 1: Downstream Internet speeds in the Chicago region, by household in-
come tier.

Sub.  Adj. CDF at s Mbps
ACS $s=32 s=82 s=182
Income f; a; bh‘ bQi bgi
0.003 0.635 0.643 0.643
Lower 0.62 (0.000) B B B
Middle  0.84 0.062 0.478 0.636 0.712

(0.001) (0.009) (0.010) (0.010)
0248 0214 0483  0.751
(0.001) (0.001) (0.002) (0.001)

Upper 0.94

Notes: Parameters are from Nelder-Mead maximum likelihood estimation of Equation 9. Standard errors are from the Hessian
matrix under assumptions of normality. The “universe” of the CDFs represented by bs; is Internet-subscribed households.
Values are from Speedtest users, not the entire population. Biases are discussed in Section 4.2. The adjustment parameter
for low-income households reaches its lower bound (0), so that the estimates of the speed distribution are not constrained
(standard errors undefined). For reference, the shares of households by income tier that subscribe to broadband Internet, F;,
are tabulated from the American Community Survey.

arriving a day “late,” in the canonical Poisson arrival process. It is the full reality of the
data-generating process that generates counts.

The second issue is that the standard errors are based on the asymptotic estimates of the
variance from the Hessian matrix (derivatives in the information matrix). The assumption
is then that the parameters (not the counts) are normally distributed. This is defensible in
general, but it fails when parameters reach the edge of their bounds, so that the derivative
is not well-defined. This happens in practice, for ag, as we shall see.

Finally: why have we relied on the Census to break out the extensive margin of broad-
band access, instead of using simply households by income? On its own, the model cannot
disentangle selection due to having Internet from selection due to running a test. In the
Speedtest data, those who do not run a Speedtest are indistinguishable from those who
do not have Internet service. The Census allows us to break this degeneracy. This means
that our estimates represent Internet testing rates conditional on Internet. The fraction of
households with Internet subscriptions, F;, can be estimated directly from the ACS.

Results for the model are displayed in Table 1. Several results warrant mention. First,
in terms of information only available from the ACS data, having Internet service increases
substantially with income. Indeed, for the lower income group, fully 38 percent of households
do not have Internet service, but only 6 percent of households from the upper income group
do not.

Second, for the lower income group, the number of devices running a Speedtest is ex-
tremely low, only three in a thousand: the test rate is converging to its lower limit. Hence,
one should have no confidence in the speed estimates for the lower income tier because the
Speedtest data simply does not provide enough coverage for low-income households. Indeed,
the standard errors on the estimates of by, are not well-defined. This point nicely illus-
trates the advantage of combining data. Without appealing to the ACS, it would have been
impossible to identify the low-sampling rates of lower income households.

Similarly, higher-income households (incomes in excess of $75k), generate 3.7 times more
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tests than middle-income households (with incomes $35k-75k): 0.25 vs 0.062 testing de-
vices per Internet-connected household. The Speedtest data are highly biased toward upper
income households, as was apparent in Figure 1.

Finally, devices from high-income households are half as likely as devices from the middle-
income group to record speeds in the “basic” connection tier, below 32 Mbps (0.478 vs 0.214).
On the other hand, the middle income group records a greater proportion of tests at the top
of the distribution, with downstream speeds in excess of 182 Mbps, than the highest income
group (1 —0.71 =0.29 vs 1 — 0.75 = 0.25).

In Appendix Table 1, we present estimates from a model that treats the selection ad-
justment rate as a single parameter, shared across income bins. With these estimates, the
share of middle income households fitted to have bandwidth less than 32 Mbps falls from
0.48 to 0.29. This behavior is exactly what you would expect, if wealthier households were to
generate a disproportionate share of tests. In that case, speeds observed in each tract would
be dominated by tests generated by wealthier households. Figure 1 showed that this dispro-
portionate testing rate is the reality. As further shown in the Appendix (Table 1), the gaps
between the middle and upper income groups are larger when considering upstream band-
widths, and revert to the “expected” direction: 24% of upper-income Internet-connected
households have upstream bandwidths in excess of 32 Mbps, while the estimate for middle-
income households is consistent with 0.

4.3 The Impact of Infrastructure: Discontinuous Fiber Deploy-
ments

We can embroider the model above, incorporating the plausibly causal impact of fiber de-
ployment on bandwidths measured by consumers. Figure 2(c) shows the availability of fiber
broadband subscriptions by tract, while (d) displays median upstream bandwidth. At a local
level, fiber follows not demographic lines but a regional park and a highway: “X” marks the
spot, in the northwest of the city. This is our spatial discontinuity. Visual inspection shows
that it is strongly linked to speed even though these observables are really distinct.

We incorporate this effect in the likelihood by separating the high-income bins (which
account for most of the tests) between fiber and non-fiber tracts. A tract is defined as having
fiber if more than half of the blocks within it have at least one provider. Fiber infrastructures
are associated with a dramatic increase in upstream data speeds (see Figure 2(c-d)). How-
ever, the differentials in downstream performance for upper income households in tracts with
and without fiber are fairly small: there are reductions in the two slowest speed categories
and modest increases in the two fastest categories.

Results for this model are shown in Table 2. Devices associated with upper-income
households are 8.4% more likely to register speeds in the top two speed tiers, in neighborhoods
where fiber subscriptions are available, than in neighborhoods where they are not. The
estimates of the adjustment parameters change very modestly from those in Table 1. Upper
income households with access to fiber do have faster Internet service than the middle income
category, but upper income households without access to fiber remain a bit less likely to have
Internet services at the fastest tier.
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Table 2: Downstream Internet speeds in the Chicago region, separating tracts
with and without fiber infrastructures. Tracts with and without fiber are also distin-
guished for upper-income households, based on ISPs offerings as reported on FCC Form 477.

Sub.  Adj. CDF at s Mbps
ACS s=32 s=82 s5=182
Income E a; bli bgi bgi

0.002 0.003 0876  0.876
(0.000) (0.000) - -
0.066 0505 0.618  0.731
(0.001) (0.009) (0.009) (0.008)
0243 0221 0500  0.758
(0.001) (0.001) (0.002) (0.001)
0253 0.170 0416  0.700
(0.001) (0.002) (0.003) (0.002)

Lower 0.62

Middle 0.84

Upper w/o Fiber 0.94

Upper w/ Fiber  0.95

Notes: In this model, the parameter for the CDF of speeds for low-income households has reached its boundary constraint at
zero. The SE is therefore defined even though the estimate is not meaningful. (See also notes to Table 1.)

5 Discussion

Venturing into the world of “big data,” with self-selected, unmatched samples, we obtain
estimates that are unavailable from traditional sources. In our application, we exploit a
crowd-sourced sample of Internet speed measurements. At first glance, these data appear
to offer an excellent opportunity to measure the variation in Internet speeds across income
classes: the “digital divide.” We show, however, that when we combine the Speedtest data
with Census data from the ACS and construct a simple selection model, the rate of sampling
from low-income households is so low that performance cannot be measured for this group.
In our view, this finding highlights the need for data combination and care for selection
effects. The low testing rate of low-income households is also apparent, with the natural
consequence that the CDF of Internet performance is unconstrained for that group. At
the same time, we do extract meaningful estimates of Internet performance for middle- and
upper-income households. We have also shown how other plausible assumptions — a testing
rate dependent on speed instead of income — allows for useful non-parametric estimates.

Research on the geography of Internet access, and data combination in general, is relevant
to an evolving theoretical understanding of poverty measurement. Recent work across eco-
nomics and sociology has emphasized the multidimensional nature of poverty and the need
for measurement of the distinct, interlocking resources necessary for a complete, flourish-
ing life in a neighborhood (Heckman and Mosso, 2014; Sharkey and Faber, 2014; Sampson,
2011). Internet access is one such facet. Other applications may include ride-share trips,
package deliveries, or social engagement as proxied through 311 calls. None of these datasets
can be linked to Census microdata, but they can often be aggregated geographically to the
Census tract level. This is exactly what we have done here, and we hope that our selection
model will find broad applications.

Along the lines of classic work on health care and resource accessibility, access is deter-
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mined not only by infrastructures but by a cascading set of economic and social factors;
pro forma availability is not on its own a complete metric or, typically, even the relevant
one (Harvey, 2009; Aday and Andersen, 1974). Shifting from the FCC’s 477 “offerings” to
realized performance is a step forward.

Our goal in this work has not been to provide consistent estimates of the underlying joint
distribution function of Internet speed and income. In our view, the inherent limitations of
the Speedtest data and the aggregation of the ACS data preclude consistent estimates of the
relevant distribution functions. Instead, we aim to reduce errors by offering an approximate
model.

Our approach does, however, caution against two reactions to “big data.” First, naively
applying data with unknown sample frames can result in serious errors of inference. Without
combining data, one might mistakenly have assumed that the Speedtest data had coverage
of low-income households. The second view, which we consider equally naive, is to dismiss
quality data out of hand, if the sample frame is not known. Doing so obviously precludes
any possibility of inference and seems equivalent to asserting there is no information in the
data.
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A Common Uses of the Internet

The Current Population Survey’s supplement for the National Telecommunications and Infor-
mation Administration (NTTA) elicits broadband and technology penetration, and common
uses of the Internet. Table 1 This most recent cycle of this survey was in November 2019,

before the Coronavirus pandemic; more recent work-from-home numbers would presumably
be higher.

Table 1: Proportion of US adults who wuse wvarious Internet technologies
and services. Data from National Telecommunications and Information Administration’s
November 2019 supplement to the Current Population Survey.

Adults who Common Activities
access the Internet among Internet Users
Anywhere 0.81 Texting 0.92
At Home 0.76 Email 0.91
At Work 0.39 Watching Videos 0.74

Social Media 0.73

Adults who Finance/Banking 0.72

use devices Calling 0.50
Smartphone 0.76 Services (Uber, &c) 0.35
Computer 0.62 Remote Work 0.25
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B Illustration of the Non-Parametric Variable, R.

Figure 1 shows R as defined in Equation 6, as a function of tract log median household
income. R is the ratio of a tract’s share of the region-wide low-speed and high-speed devices.
The correlation between R and neighborhood income is 0.28.

Figure 1: Relative shares of low- and high-speed devices, as a function of tract
log median household income. Shares are normalized by the region-wide rates, see
Equation 6 and discussion. Point sizes represent the number of test devices in each tract.

9.5 10.0 105 11.0 11.5 12.0 12.5
Tract Log Median Household Income
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C Results for a Model with a Single Adjustment Rate

Here, we manipulate the model defined in Equations 8 and 9, making a single adjustment rate
or proportionality between tracts’ Internet-connected households and test devices. Results
are shown in Table 1. With respect to the nominal estimates of Table 1, this model fits
fewer middle income households as falling within the lowest speed tier: the CDF at 32 Mbps
(b11) as 0.29 instead of 0.48. This is as expected. This model, which we consider less
credible, treats all households as generating an equal share of data. Empirically, we know
that wealthier neighborhoods generate more data, we expect that this is also true at the
household level. If that is true, then the devices affecting the “middle-income” estimates in
Table 1, are biased towards wealthier and presumably faster connection tiers.

Table 1: Downstream Internet speeds in the Chicago region, under the assump-
tion of constant sampling rate. By contrast with the nominal model (Table 1), estimates
of the bin boundaries for the low-income group are defined. As expected, speed estimates for
the middle-income group are also higher than for the nominal model: fewer households in
the lowest speed bin.

Sub.  Adj. CDF at s Mbps
ACS s=32 s=82 s=182
Income ]:z a; = a bli bgi bgi

0.149  0.424  0.690 0.841

Lower 062 ) 500)  (0.008) (0.009)  (0.008)

. 0.149 0286 0.503  0.703
Middle 084 500y (0.007) (0.008) (0.007)
Upper 0.01 0149 0180 0450 0739

(0.000) (0.002) (0.002) (0.002)

(See notes to Table 1.)
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D Results for Upstream Bandwidths

Results for upstream bandwidths are presented in Table 1.
For downstream bandwidths, the boundaries between speed tiers were set (at 32, 82, and
182 Mbps) so that each tier captured roughly one quarter of tests overall. For upstream

bandwidths, the bin boundaries are set in the same way. The bin bounds thus shift to to
[0,9), 9,13), [13,24), and [24, c0) Mbps.

Table 1: Upstream Internet speeds in the Chicago region, by household income
tier.

Sub.  Adj. CDF at s Mbps

ACS s=9 s=13 s=24
Income .E a; bh' bgi bgi
Lower  0.62 -0.000  0.022 0.262 0.262

(0.000) (0.000) - -
0.074 0566 0816  1.000
(0.001) (0.008) (0.008) (0.000)
0243 0214 0468 0.759
(0.001) (0.001) (0.001) (0.001)

(See notes to Table 1.)

Middle 0.84

Upper 0.94
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